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I. SUMMARY 

N a K  has a high chemical a f f i n i t y  f o r  oxygen with the resu l t ing  product 

being N a  0; sodium monoxide, because it i s  the most thermodynamically stable 2 
oxide. Pr incipal  source of oxygen i s  from opening a sealed system, 

sources can be from the  cover gas impurit ies,  res idua l  oxygen and moisture when 

Other 

f irst  f i l l i n g  a loop; and from oxides that are less thermodynamically stable 

than Na20. 

of corrosion of iron-base al loys;  damage t o  oxygen-sensitive materials and 

Uncontrolled oxide can cause loop plugging i n  cooler areas; accelerat ion 

changes i n  NaK physical p roper t ies .  The oxide can be controlled by s t a r t i n g  with 

and assuring a t i g h t  system; use care when cu t t ing  i n t o  a loop; and removal of 

oxides by a pur i f ica t ion  system. 

content t o  assure high pur i ty .  

Methods are avai lable  f o r  monitoring oxide 

I1 * INTRODUCTION 

NaK, the  primary loop heat t r a n s f e r  f l u i d  f o r  the SNAP-8 system, is an  

eu tec t ic  mixture of two a l k a l i  metals, sodium and potassium. 

f o r  se lec t ion  of t h i s  a l l o y  system was because of i t s  r e l a t ive ly  law melting 

point,  high boi l ing  point,  l o w  vapor pressure, thermal s t a b i l i t y ,  and high heat 

t r ans fe r  coef f ic ien ts .  

The bas ic  reasons 

The a l k a l i  metals are very react ive toward moisture and oxygen, and thus 

spec ia l  handling i s  required. If these contaminants are present, the  chemical 

reaction r e su l t s  i n  the  formation of a l k a l i  metal oxide, which can have adverse 

e f f ec t s  on the  system. This technical  memorandum describes tk react ion of NaK 

with these impurit ies,  t he  e f f ec t s  of t he  oxide on system operation and methods 

f o r  removal. 

111. ALKALI METAL OXIDES 

The a l k a l i  metals are assigned Group 1 posi t ion i n  the periodic chart  of 

elements, Fig. 1. As the  atomic number increases,  so  does r eac t iv i ty .  

Lithium i s  less react ive than sodium; sodium i s  less react ive than potassium. 

However, the  combination of sodium and potassium i n  the  eu tec t ic  a l l o y  



NaK, Fig. 2, is  more reac t ive  than i s  the  potassium, because it is  a l iqu id  

and thus it has grea te r  i n t e rna l  energy due t o  the added heat of fusion. The 

reason t h a t  the  a c t i v i t y  increases w i t h  the atomic number i s  tha t  as the lone 

electron i n  the outer c i r c l e  becams fu r the r  d i s t a n t  from the  nucleus, the 

binding energy decreases. On the opposite s ide  of the tab le  oxygen i n  Group 6A i s  

a s t rong e lec t ron  acceptor.  The r e a c t i v i t y  of the elements i n  t h i s  group decreases 

as the atomic number increases because the  nucleus has more a t t r a c t i o n  power i n  

the lower atomic number than the higher atomic number of the same'group. 

Various oxides of the  individual a l k a l i  metals can e x i s t  i n  equilibrium 

with the m e t a l .  The presence of a pa r t i cu la r  compound i s  contingent on the  

a v a i l a b i l i t y  of the oxygen and the  temperature. 

The severa l  oxides of sodium and potassium and selected physical 

properties are shown i n  Table 1. Some of the  properties of these oxides were 

not avai lable .  The t ab le  shows that the s t ab le  oxide f o r  potassium a t  room 

temperature is  the KO but for the sodium, it is  the Na202. 

if an excess of oxygen e x i s t s ,  the  compound t h a t  w i l l  form with the  individual  

alkali metal w i l l  be t h a t  which i a  stable a t  room temperature. 

This means t h a t  2 

The normal oxide tha t  i s  present i n  the  NaK systems is  the N a  0, sodium 2 
monoxide. 

Potassium super oxide, KO the s t ab le  oxide for K at  room temperature, 

a very s t rong oxidizing agent, is  used as a source of oxygen i n  Kemox G a s  

Naska, Ref. 1. This oxide reportedly w i l l  explode i f  it comes i n  contact with 

organics or with unoxidized K or NaK. Short ly  a f t e r  World War I1 i n  England 

two men were k i l l ed  when an oxidized potassium ingot  - probably w i t h  some of 

the protect ive o i l  on it - w a s  cut, see Appendix I. 

2 

While it is  t rue  t ha t  oxygen i s  p re fe ren t i a l ly  attached t o  the sodium 

i n  the NaK a l l o y  system, oxidation of potassium t o  KO2 may occur on the walls 

of equipment where s t a t i c  NaK i s  not i n  d i r e c t  contact w i t h  the bulk of the 

l i qu id  metal and there i s  a source of oxygen. 

i n  the expansion reservoi r  above the l i qu id  l i n e  where concentration of the  

potassium i s  grea te r .  The pressurizing cover gas w i l l  supply f i n i t e  amounts of 

moisture and oxygen which w i l l  oxidize the l i qu id  metals i n  t h i s  area. Oxidation 

of potassium i s  a l s o  possible on the  surface of a pool of NaK where an oxide 

This condition would a l s o  e x i s t  
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layer is formed preventing d i r e c t  contact between t h e  NaK and the top  of the 

oxide layer .  

may occur i n  a NaK system i f  hydrocarbons are used f o r  cleaning the equipment. 

I n  severa l  instances where explosions have occurred i n  NaK systems, there  was  

the poss ib i l i t y  that both super oxides and hydrocarbons existed.  

have been no d i f f i c u l t i e s  encountered wi th  KO2 formation i n  equipment operated 

i n  the  proper manner. 

Deposited oxides from sodium are reported t o  be s i l ve ry  and b r i t t l e ,  

Ref .  2 .  The s i lve ry  color  may have been sodium m e t d  contamination. Hardness 

values of the oxides would be very d i f f i c u l t  t o  measure because of potent ia l  

presence of the metal. 

Under these conditions, when KO i s  present an explosive react ion 2 

However, there  

The NaK oxide i s  heavier than the NaK. On i n i t i a l  exposure t o  air, the  

oxide is on the surface because of surface tension. There i s  no information on 

the s e t t l i n g  rate of the oxide, as it grows on t op  of the NaK. 

From the r e a c t i v i t y  of potassium and the  amount of potassium i n  the NaK 

it would be assumed tha t  the potassium oxides preferen t ia l ly  e x i s t  but t h i s  i s  

not t rue .  Figure 3, the free-energy of formation of various oxides from R e f .  3, 
solves this anomaly. Free energy of formation i s  a thermodynamic function t h a t  

defines the s t a b i l i t y  of a compound. S t a b i l i t y  increases as the free-energy 

value becomes more negative. Note, however, the free-energy does not define 

the  k ine t ics  of the system, i . e . ,  it does not say when the react ion w i l l  occur, 

only that  it has the  poten t ia l  t o  occur. 

than the potassium monoxide, see Fig. 3. Thus, when a s y s t e m  of sodium and 

potassium occur with oxygen, the s t ab le  oxide will be the sodium monoxide. 

N a  0, sodium monoxide is  more negative 2 

Potassium monoxide probably forms but  does not remain because it i s  less 

thermodynamically s t ab le  than the sodium monoxide. 

sodium i n  the potassium system as an impurity, can be removed by react ing it with 

oxygen, Ref. 4. 

It has been shorn t h a t  the  

A. SOURCES OF OXYGEN 

The tab le  below l i s t s  the  sources of oxygen i n  a l i qu id  metal 

system. 

SOURCES FOR OXYGEN PICKlTP BY ALKALI METAL SYSTEMS 
1. 

2.  

3. Cover gas impurit ies.  

4. 

Opening a system t o  remove or replace a component, o r  a leak. 

Residual 0 and moisture i n  a loop when first f i l l i n g  
2 

Scavenging of oxide from compounds less thermodynamically s t ab le  

than Na20 
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The primary source occurs when a system is opened. Extreme care must 

be taken because both air  and i ts  included moisture reac t  t o  produce oxide. 

The main precautions a re  t o  not have a vacuum i n  the system and t o  s e a l  the 

open l i n e  as soon as possible a f t e r  removing the i t e m  of i n t e r e s t .  Expandable 

rubber plugs (i *e., similar t o  those used f o r  Thermos b o t t l e s )  are recommended 

f o r  seal ing because of t h e i r  u t i l i z a t i o n  ease and sea l ing  a b i l i t y .  

Another source of oxide is the cover gas which as-procured fir SNAP-8 

is  guaranteed t o  have no more than 20 ppm (by w t )  gaseous impurit ies and 2 

of moisture per 1000 f t e 3  

and i t s  l e v e l  were 20 ppm, there  would be enoagh oxygen i n  1000 f t  

generate approximately .OO9 lb sodium monoxide, a quant i ty  su f f i c i en t  

t o  plug a 0.6 i n .  d i a .  l i n e  i f  it were to deposit  i n  one place.  

i n  the same gas quant i ty  would produce approx. 10 lbs . sodium monoxide. See 

Appendix 2 Section 1 and 2 f o r  ca lcu la t ions .  

use 

grains 

If it were assumed tha t  oxygen was  the only impurity 
3 a t  STP t o  

The moisture 
-4 

The other  sources are minor and w i t h  good operating procedure can be 

controlled or circumvented as problem areas. 

B. SOLUBILITY AND CRYSTALLIZAmON 

Mny l iqu ids  a r e  capable of s e l ec t ive ly  dispersing so l id s  by 

dissolving, such tha t  t he  l i qu id  and the  s o l i d  become a homogeneous solut ion.  

The solvent act ion i s  postulated t o  r e s u l t  from a t t r a c t i v e  force between the 

l i qu id  and a spec i f ic  s o l i d .  Thermal forces  a id  solvat ion forces of t he  

l iqu id  t o  break apar t  the  s t ruc tu re  of the  s o l i d  and disperse the molecules. 

This is analgous t o  vaporization of a l iqu id  t o  a gas. The dispersed solkd 

i n  the so lu t ion  i s  defined as a solute;  the  dispers ing l i qu id  i s  defined as 

the solvent .  

The so lu te , in  the  solvent as molecules or ions,  moves around the  

system due t o  i ts  k ine t i c  energy of t r ans l a t ion .  Some pa r t i c l e s  w i l l  thus 

continue t o  re turn  t o  the  surface of undissolved s o l i d .  Par t ic les  from the 

so l id  having the  composition of the so lu t e  w i l l  continue to disperse i n t o  the 

l i qu id .  When the  re turn  r a t e  equals the dispers ing r a t e  at  a spec i f i c  

temperature, equilibrium i s  establ ished and t h i s  can be plot ted.  The 

equilibrium s o l u b i l i t y  curve has been defined f o r  the sodium monoxide i n  NaK, see 

Fig. 4. This i s  a l s o  known as a plugging curve- The f igure  shows that the 



sodium monoxide concentration increases as temperature increases,  bu t  s ince 
it i s  an equilibrium condition, it i s  time-dependent.. 

If a so lu t ion  i s  saturated - t h a t  is ,  it cannot hold any more so lu te  

at  t h a t  temperature - the concentration of t he  so lu te  i s  on the curve of the 

equilibrium diagram a t  t h a t  spec i f ic  temperature. 

equilibrium quant i ty  of Na 0 i n  a NaK system i s  LOO ppm, as oxygen, see Figure 4. 2 

For example, a t  ~OO'F, the 

It i s  theorized that  as the equilibrium s o l u b i l i t y  l e v e l  is  approached 

the a t t r a c t i v e  forces between some of the solute  molecules begin t o  overcome 

the  forces of solvat ion.  when the  temperature i s  decreased below the sa tura t ion  

leve l ,  the molecular a t t r a c t i v e  forces  are the dominating ones and enough so l id  

w i l l  be formed t o  re-establish equilibrium. 

I n  solute/solvent systems supersaturation can 

re ten t ion  of solute  beyond the  s o l u b i l i t y  values. 

because of the high s o l u b i l i t y  of small c rys t a l s .  

by carefu l  exclusion of c rys ta l l ized  par t ic les ;  by 

occur, tha t  i s  t h e  

This phenomenon occurs 

Supersaturation i s  aided 

slow changes i n  temperature; 

and by quiescent conditions i n  the  l i qu id .  Conversely prec ip i ta t ion  or 
c rys t a l l i za t ion  is aided by: moderately fast changes i n  temperature; the flowing 

system; the existence of c rys t a l s  of the so l ids  t h a t  a c t  as seeds; and rough 

surfaces.  The conditions f o r  super sa tura t ion  d o n o t  e x i s t  i n  the SNAP-8 system. 

Crys ta l l iza t ion  i s  u t i l i z e d  by SNAP-8 t o  purify NaK. This i s  known as 

cold-trapping and w i l l  be described la ter .  

C. THE EFF'ECT OF OXYGEN ON A LIQUID AlxALI METAL SYSTEM 

The tab le  below l i s t s  the e f f ec t s  of alkali m e t a l  oxides on a l iqu id  

m e t a l  system. 

EFF'ECTS OF ALKALI METAL OXIDES ON A SYSTEM 

1. 
e S p c i a l l y A s m a l l  Aiametcr l i n e s .  

Plugging by c rys t a l l i za t ion  i n c o o l e r  portions of the loop, 

2 .  Acceleration of m a s s  t r ans fe r  corrosion of i ron  base a l loys .  

3. Oxidation 

sodium monoxide. 

4. Depletion 

physical property of N a K .  

Each of these 

1. PLUGGING 

of materials more thermodynamically stable than 

of sodium from 

are considered 

NaK a l loy ,  which w i l l  change the 

below. 

If the NaK system i s  saturated with Na20 at a par t icu lar  

temperature the oxide w i l l  c rys t a l l i ze  i n  cooler areas, f o r  example transducer 

l ines  and smaller clearance areas Redissolving i s  very d i f f i c u l t  because 
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solvat ion i s  controlled by temperature and concentration of the oxide i n  the 
NaK a t  t h a t  locat ion.  

controlled by thermal convection and d i f fus ion .  

because of t he  oxide melting point, approximately 1700 F. 

If a l i n e  i s  plugged, the oxide removal would be 

Removal by melting i s  d i f f i c u l t  
0 

2. MASS TRANSFER 

N a  0 accelerates  corrosion of iron-based a l loy  i f  the 2 
concentration as oxygen is  50 ppm or grea ter  (200 ppm N a  0 ) .  

t h a t  the  following chemical formula defines the m a s s  t r ans fe r  corrosion i n  NaK/iron 

base a l loy  system when the  concentration of Na20 is  above a 50 ppm it5 oxygen; 

I n  the  hot leg,  (approximately 1300'F): 

I t , i s  postulated 2 

y Fe + (x + y )  Na20 -(Na20)x(FeO) -+ 2yNa 
Y 

I n  the cold l e g  (approximately llOOo) 

(Na2olx (FeOIy + 2y NaK- yFe + (x  + y ) Na20 + 2yK (Ref. 5)  

As  can be seen, the N a  0) recycles and picks up addi t iona l  i ron  i n  the  hot leg,  

but  the oxide i s  never depleted.  

it gradually bui lds  up and can eventually close a l i n e .  

2 
As the  i ron  prec ip i ta tes  i n  the cooler leg,  

3. OXCDES OF MATERIALS MORE THERMODYNAMICALLY STABIX 
If materials e x i s t  i n  the system t h a t  have oxides t h a t  are 

more thermodynamically s t ab le  than the N a  0, see Fig.  4, the  N a  0 can reac t  t o  

give the  oxide of t h a t  m e t a l  and regenerate the sodium. 

material t h a t  i s  sens i t i ve  t o  oxygen, i t s  physical p r o p r t i e s  can be affected.  

This pr inciple  i s  employed when zirconium is u t i l i z e d  i n  hot t raps  t o  g e t t e r  

oxygen from l iqu id  a l k a l i  metal. system. 

2 2 
If the metal is a 

4. DEPIXTION OF SODIUM 

Table 2 summarizes the  propert ies  t h a t  could be affected 

If the oxygen w e r e  continually by depletion of sodium from the NaK, Bf.  6. 
present t o  deplete  sodium, enough would eventually be removed that could change 

the  physical propert ies .  

the  m a x i m u m  u t i l i z a b l e  composition f o r  SNAP-8 t h a t  w i l l  not s a c r i f i c e  system 

By def in i t ion ,  83% potassium NaK has been defined as 

performance. 

per 100 l b s .  N a K  would be required, see Appendix 2, Section 3 f o r  calculat ions.  

This l i m i t  gives wide l a t i t ude ,  however, s ince 27 f t e 3  of oxygen 
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I V .  CONTROL OF ALKALI MEX!AL OXIDES 

A. 0PERATlONA.L PROCEDWS TO PmVENT CON!I!AMINATION 

During the developmental days of the  l i qu id  m e t a l  cooled nuclear 

reactor ,  r ea l i za t ion  of the adverse e f f e c t  of oxide i n  l iqu id  a l k a l i  metals 

led t o  the development of handling and pur i f ica t ion  techniques t h a t  were 

capable of achieving and maintaining high puri ty .  

the following: 

Among the techniques were 

1. Assure? tha t  the system is  leak t i g h t  s ince l i qu id  a l k a l i  metals 

can leak through very s m a l l  holes pa r t i cu la r ly  at elevated temperature. 

Jo in ts  should be welded and helium le& checked. 

2. Sub-assemblies must be cleaned and dr ied pr ior  t o  incorporation i n  

(It i s  recommended that  cleaning be done i n  the  simplest configuration a loop. 

and t h e  i t e m  prevented from subsequent re-contamination) . 
or water remain, NaK w i l l  react ,  causing oxide or a po ten t i a l  explosive condition 

depending on the f l u i d  remaining. 

Adequate cont ro l  of oxygen and moisture i n  the  cover gas m u s t  be 

If cleaning solut ions 

3 .  
maintained. 

4. Minimize the time a system is  open t o  the  air .  An open system i s  

the  biggest  source of oxygen contamination i n  a l iqu id  a l k a l i  metal system. 

an o p n  system is  subjected t o  continuous atmospheric conditions, excessive 

oxygen w i l l  be absorbed by the system because of res idua l  NaK. NaK on the w a l l  

and any that does not dra in  w i l l  react  with oxygen and moisture i n  the air. As 

t h i s  react ion proceeds a p a r t i a l  vacuum resu l t s  as the  0 and moisture a re  

depleted. The vacuum continues t o  such i n  addi t ional  air  w i t h  i t s  moisture 

and oxygen. 

which are very hydroscopic, they would continue t o  absorb the oxygen from the 

air and eventually a sodium and potassium hydroxide solut ion would be present*. 

If 

2 

The NaK would then be converted t o  sodium and potassium hydroxides, 

5. Perform hot and/or cold dumps as necessary if the system becomes 

grossly contaminated. The purpose of a hot or cold dump is t o  prevent gross 

contamination of t h e  cold t rap ,  which can t r a p  l imited quant i t ies  of oxide. 

Hot or cold dumping can be economical i f  gross contamination e x i s t s .  

* 
Carbon monoxide from t h e  air  w i l l  a l s o  react forming carbonates. 
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B. PURIFICATION TECI-nuIQLJES DURING LOOP OPERATION 

1. Cold Trapping 

Cold trapping, a pur i f ica t ion  technique developed t o  remove 

sodium monoxide, R e f .  7, u t i l i z e s  the  pr inciples  of s o l u b i l i t y  and 

c rys t a l l i za t ion  (see I I I B ) .  

1-3$ of the main loop f l u i d ,  cooling it below the  oxide c rys t a l l i za t ion  

temperature, passing it through a bed of s t a in l e s s  s teel  mesh of 'approximately 

20-24 lbs / in  density,  reheating and returning it to the main flow. Figure 5 
i s  a schematic of a typ ica l  pur i f ica t ion  system. 

The technique consis ts  of by-passing approximately 

3 

The oxide l e v e l  a t  any time is  determined by performing a 

"plugging run,'' i . e . ,  a test  t o  determine the c rys t a l l i za t ion  temperature of 

the sodium monoxide. For t h i s  tes t ,  a s m a l l  flow of NaK is  passed through a 

closed valve with a ser ra ted  sea t ,  see Fig.  5, as the t e m p r a t u B  i s  slowly 

decreased. The f l a w  rate and temperature are monitored by an X-Y p l o t t e r .  When 

the slope of t h e  curve suddenly drops, the  value i s  taken as the  plugging 

temperature. 

re fe r r ing  t o  the  equilibrium s o l u b i l i t y  curve, Fig. 4. 
plugging temperature i s  600 F, t he  NaK contains 100 ppm N a  0 as oxygen. 

The Na20 content - as PPM oxygen - can then be determined by 

For example, i f  t he  
0 

2 

2 .  Hot Trapping 

A l k a l i  metal oxides can be removed from the  a l k a l i  metal by 

react ing with a metal whose oxide has grea te r  thermodynamic s t a b i l i t y  than the 

oxide being removed, see Figure 3. It i s  noted that elements such as zirconium, 

titanium, hafnium, t a n t a m ,  tungsten, boron are  among the materials t h a t  can 

be used. These materials a re  used at) elevated temperatures because the  k ine t ics  

of react ion and d i f fus ion  of the oxides i n t o  the  trapping metal a r e  such t h a t  

the low temperatures are not k ine t i ca l ly  feas ib le  and thus,  the reduction of 

Na20 by t h i s  method i s  cal led "hot trapping." 

of  t he  most e f fec t ive  hot  trapping materials because it forms an adherent oxide 

and t h e  oxygen readi ly  d i f fuses  i n t o  the base zirconium metal. For the 

zirconium t o  be e f fec t ive ,  it must be heated t o  approximately 1100 t o  1500'F. 

Zirconium has been found t o  be one 

Prior  t o  hot-trapping as much oxide as possible must be removed 

by cold-trapping f o r  economic reasons. The cold t r a p  then i s  valved out of t he  

system because the  oxide from the cold t r a p  would be continuously redissolved t o  

s a t i s f y  equilibrium conditions and be t ransferred t o  the hot t r ap .  

u t i l i zed  pr inc ipa l ly  when an oxygen sens i t ive  component i s  i n  the system. 

Hot t raps  are 
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3. Soluble Getters 

A mater ia l - l ike barium which is  soluble  i n  NaK and which has 

oxides t h a t  are more thermodynamically s t ab le  than sodium monoxide, can 

theo re t i ca l ly  be used t o  purify a system. The advantage of such a system is  
t h a t  the  g e t t e r  i s  continuously i n  intimate contact with the NaK and thus i s  

readi ly  avai lable  f o r  reac t ion  with oxygen wherever it e x i s t s  i n  the  system. 

Potent ia l  problems would be the  s o l u b i l i t y  of the  barium oxide in - the  NaK and 

the  react ion of t he  barium and/or barium oxide wi th  the  materials of construction. 

L i t t l e  work has been performed to define the parameters of t he  technique. 

C. OTHER INLINE MONITORING DEVICES 

I n  addi t ion t o  t he  plugging valve previously described, there  are 

two in- l ine  monitoring devices being developed. 

developed f o r  N a  systems with a range of detect ion of from one t o  100 parts  

per mil l ion  of oxygen and an operational temperature of 650 F, Ref. 8. 
it has never been tested i n  NaK, it i s  claimed t h a t  it can be adapted f o r  NaK 

systems a l so .  The apparatus consists of a s o l i d  e l ec t ro ly t e  separating an  inner 

reference electrode from t h e  a l k a l i  metal. This combination forms a galvanic 

c e l l  which develops a voltage proportional t o  the content of the oxygen i n  the 

a l k a l i  m e t a l .  The advantage of an in- l ine  monitoring device i s  t h a t  continuous 

monitoring can be achieved. 

An electrochemical c e l l  has been 

0 Although 

A r e s i s t i v i t y  meter (RHOMETER) i s  being developed, R e f .  9 ,  10, 

which measures the resis tance increase of the  a l k a l i  metals with increase i n  

impurit ies.  

but carbon and hydrogen can influence it. 
However, t h i s  instrument i s  not se lec t ive ,  t ha t  i s ,  not only oxygen 
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TBBL;EI 

OX~DES OF SODIUM AND POTASSIUM 

WLTI9G DENSITY 
POTASSIUM TEMP. F _g/cc COLOR C OMMl3NTS 

945 - hThi  te 
K2° 

- 

% O2 914 - Orange - 

806 - Chocolate Brown Dissociates a t  K2 '3 
1335OF 

K02 

3 KO 

SODIUM 

Na2  0 

Na202 

71.6 

1-71. 

1688 

960 

2.14 

2 -39 

2.6 

Deep Orange Stable Oxide at 

Room Temperature 

Red 

White 

Yellow White Stable Oxide at Room 

Temperature ; S t a r t s  

Decmposing Approx. 

9 6 0 ' ~  

Na02 1026 2 -8 Bright Yellow S t a r t s  Decomposing 

Approx . 2 10°F. 

- - Dark Red - 
3 N a O  

NaK B n s i t y  at Room Temperature 0.87 



TABLE I1 

CHANGE OF PHYSICAL, PROPERTIES OF EUTJCTIC NaK 

CAUSED BY SODIUM DEPLETION 

VALUE FOR EUTECTIC PERCENT CHANGE FOR . ,  
PROPERTY NaK (78%~)  83SK NaK ' 

6 0 0 ' ~  14OO0F 

Density ( Lb/Ft3 ) 49.6 43.0 -1.2 -0 -93 

Specific Heat 0.2117 0.2122 -0.65 -0.62 

(BTU/Lb -OF) 

Viscosity, Abs. 0.58 0.31 m.12 - a 8 4  
(Lb/Hr-Ft ) 

Prandl Number 0.0082 0 00475 -6.7 -5.5 
( c  P /K) 

NOTE: 83% K NaK has been defined as the maximum u t i l i z a b l e  

composition for SnAP-8 t h a t  w i l l  not s ac r i f i ce  system 

perf omance . 



PEBIODIC TABLE OF THE ELEMENTS I la I 2s I 3b I 4b I 5b 1 6b I 7b 1 8 -- 

-- 
5 +3 
B 

Atomic Number -+ 

Transhion Elements 

4 a j  s a  l h 1 7 a l  ---- 

07.19 208.980 (209) 1210) 
32-18-4 -32-18-5 -32-18-6 -32-18-7 ______-- 

-0-P-Q 
I 

Numbers in parentheses are msss numbers of most Stahle isotope of that  element. 

Figure 1 



4 

0 
0 
rl 

0 co 

0 
c- 

0 
\c) 

0 Ln 

0 
M 

0 cu 

0 
rl 



* 

Ab solute TemEeratur.e, OK 



Ternmeratwe OF 



t 
m 
m 
a, 
rl 
d 
*r+ 
cd 
-P 
u1 
v 



APPENDIX A 

Nassif Building 

Explosives Incident Report No. 2 9  

A M D  SERVICES EXPLOSIVES SaFETY BOARD 

Washington, D o  C .  20315 

Explosion of Potassium Metal 

DES C €U PTI ON 

From the  time of World War 11, severa l  drums of potassium metal ( i n  

br ick  form) had been l e f t  i n  stock. 

s e l l  the  potassium for laboratory use.  

th ick  steel  p la te ,  w a s  set  up i n  the  open yard and two operators were 

assigned t o  removing one b r i ck  at  a t i m e ,  putt ing it on the bench without 

delay, cu t t ing  it with a knife  i n t o  cubes as quickly as possible, and 

f i n a l l y  placing the  cubes i n t o  smaller b o t t l e s  f i l l e d  with an i n e r t  solvent .  

The operation, which w a s  of an emergency character only and not intended 

as a standard procedure, was  performed on a sunny, d ry  day and usual 

precautions, as when working with sodium metal, were taken. 

handling, a terrible, unexpected explosion took place.  

operators l o s t  t h e i r  l i ves  on the spot before help could a r r ive .  The 

s t e e l  p la te  and bench were sca t te red  a l l  over t he  yard, and a deep hole w a s  

b lasted i n  the  ground. 

It was  decided t o  dispose of them and 

A spec ia l  bench, covered with a 

During the 

As a r e s u l t ,  two 

CAUSE : 

The exact development of the accident could never be established f o r  

lack of witnesses. The concensus of chemists was t h a t  an oxide or  peroxide 

of potassium was formed during the  long storage under the protecting l iqu id ,  

which then i n i t i a t e d  the  ign i t ion .  

It has been reported that h i t t i n g  the  potassium with a hammer is 

dangerous and r e s u l t s  i n  i t s  igni t ion,  and t h a t  dry potassium ign i t e s  spontaneously 
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on longer exposure i n  the air due t o  t h e  oxidative formation of an e a s i l y  

flammable mixture  of metal l ic  potassium with i t s  oxides. It has a l s o  been 

mentioned t h a t  old, oxidized potassium met& is t o  be handled with the 

grea tes t  precaution due t o  i t s  oxidation t o  KO 

oxidizing agent reacting, e .g. vehemently a l s o  with potassium m e t a l  i t s e l f .  

which i s  a very s t rong 29 

Cutting even s m a l l  amounts of potassium i n  the  air on f i l t e r  paper o r  

destroying scraps of it with commercial alcohol should be avoided. 

shows t h a t  it is  b e t t e r  s tored and handled i n  dry xylene (minimal surface 

oxidation and d isco lora t ion)  than i n  kerosene (petroleum, naphtha). 

always 'be cut under a l aye r  of xylene i n  a porcelain d i sh  or mortar, the 

oxidized surface cu t to f f ,  the  scraps t ransferred without delay i n t o  a beaker 

containing xylene, the freshly-cut potassium removed by forceps i n t o  a ta red  

beaker containing xylene, and the  weighed potassium then introduced i n t o  the  

react ion mixture. Scraps of potassium, covered with xylene, should be 

immediately decomposed i n  a hood by adding te r t . -bu ty l  alcohol (not - methyl or 
e thy l  a lcohol)  gradually, a t  such a rate as to keep the  react ion under cont ro l  

and u n t i l  a l l  the  potassium has reacted. A sheet  of asbestos or s t e e l  t o  cover 

the beaker i n  case the  l i qu id  catches f i r e  should always be kept at hand. 

Experience 

It should 

Why does the "explosion" of potassium occur with greater  ease and violence 

than that of sodium? 

breaks up the adjacent area of the hot,  l i qu id  potassium metal and s c a t t e r s  it 
as a spray i n  the surrounding atmosphere, where the m e t a l  evaporates, mixes with 

atmospheric oxygen, and detonates.  

of a second and the  phenomenon i s  somewhat similar t o  the gasoline explosion 

i n  an automobile motor. 

and b .p. (779O-892Oc) than sodium, it i s  consequently evaporated and atomized 

faster than the  l a t te r .  

We mw assume t h a t  an ign i t ion ,  whatever i t s  or igin,  

A l l  these s teps  occur i n  a minute f r ac t ion  

Also, because potassium has a lower m.p. (63'5-97'5OC) 

(REPORTED BY THE MANUFACTURING CHEMISTS 'ASSOCIATION, INC 

FROM THE QUARTERLY SAFETY SUMMARY OF THE BRITISH CHEMICAL 

INDUSTRY SAFETY COUNCIL) 

Reference Number of this Report: EI-209 

Duplication of t h i s  Report i s  Authorized. 
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APPENDIX B 

CALCULATIONS 

A. AMOUNT OF OXYGEN FROM ARGON COVER GAS 

ASSUMPTIONS : 

1. Argon i s  as pure as require i . e .  99.998% pure (gaseous) 
2.  AU impurities (gaseous) are o = 20 PPM = 2 x 10-3% 2 

1. 

2 .  

3. 

4.  

5. 

C A L C U T I  ONS : 
1000 f t 3  

3 = 2.78 lb-moles Argon For 1000 Ft.3 a t  STP, there are 
359 F t  /lb-mole 

Oxygen Impurity: 
0 

= 2.21 x lbs. l b  A -5 lb 2 
(2 lo lb  Argon (2.78 Ib-Mole A) (39-95 

3 02/1000 f t  of Argon 

2.21 x lom3 lbs  O2 
32 lbs /lb -mole = 6.95 x lb-moles O2 

4 N a  + 02-2 Na20 

Thus, 1 lb-mole O2 causes 2 lb-moles of Na20 t o  be formed 

lb-moles N a  0 or (6.95 x lb-moles 02) (2)  = 13.9 x 
2 

-3 13s Ka20 l b  
(13.9 x lb-moles N a 2 0  x 62 lb-mole Na20 = 8.6 x 10 

1000 f t 3 A  

Volume of N a 2 0  

a .  Density of 

X 2 
or 

C C  

generated per 1000 f t .3  of Argon. 

Na20 - 2.39 g/cc. 

-2 12 
3 

lb = 8.6 x 10 16.4 cc. - 
i n  3 454: i n  

lbs Ba20 
- 

3 = 1 x lo-' of Na20/1000 ft Argon 
8.6 x 10'~ 1000 ft3Argorz 

8.6 x l b  

i n  
- 

3 



6. Line Size Pluggable By 0.1 in3 Na20. 

Assume a l l  the  Na20 deposits i n  one spot  t o  make a plug 

Then approximate value would be as an equ i l a t e ra l  t r i ang le .  

f D  h = -  
2 

3 1 
f 

v = 0.1 i n  = 2 ( 

t a n  60' = 6 = 1.732 

D =  
= .6 in. 3 

B. MOISTURF: I N  ARGON GAS: REACTION WITH NaK 

The procurement spec i f ica t ion  requires that argon as procured cannot 
contain more than 2 grains  moisture per 1000 f t  3 argon. 

1. 

2. 

3. 

4 . .  

5. 

(2-1 ( 1.429 X E ) = 2.86 x lom4 lbs H20/1000 f t  3 
gra in  

Heat 4 N a  + H20 __I) NaOH + 1/2 % f 3 N a  -Na20 + 2NaH 

mus,  for every l b  - mole H20, 4 l b  = moles TJa required 

-6 3 3  
2.86 x lbs  5 0  

18 lbs / lb  - mole = 1-59 x 10 l b .  moles H20/10 f t  of A 

3 The amount of N a  0 generated by moisture i n  1000 f t  argon: 

From (2):  

Therefore, from (4 ): 
H 0 i n  1000 f t  argon: 

2 
1 lb-mole H 0 w i l l  generate 1 lb-mole Na20 2 

-6 1.59 x 10 l b  mole N a  0 generated by 2 3 
2 

1.59 x lb-mole Na 0 = 9.9 x LOm5 l b  of 2 lb-mole Na20 
Na20/1000 f t 3  Argon 
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C .  AMOUNT OF N a  THAT MUST BE REMOVED FROM N a K  TO GET TO 83% K and 

AMOUNT OXYGFX REQUIRED. 

1. Condition: N a K  = 0.228 w t .  f r ac t ion  of N a  i n  new material 

2 .  Amount of N a  t o  be removed t o  give 83% K. 

L e t  X = amount of N a  t o  be removed then  .228 - X = new amount of N a .  

New weight f r a c t i o n  of N a  = = 1 - .83 = .Y7 .228 - x 
.772 + ( . 2 2 8 - ~ )  

X = .07 weight f r ac t ion  of N a  removable 

or: 7 lbs. of N a  per 100 l b s .  _.- of NaK may be removable. 
_. - 

3 .  Weight of Oxygen Required: 

7 lbs .  23 lbs/lb-mole = 0.304 lb  - moles of N a  

4 N a  + 0 2 N a  0 ,  or 1 lb-mole O2 per 4 l b  moles N a  2 2 
thus,  amount of oxygen required w i l l  be 9 l b  - moles = . q 6  

4 . Volume of Oxygen Required : 

) = 27 f t3  of O2 cu f t  (.076 lb-moles) (359 - l b  mole at STP 

per 100 lbs . of NaK. 
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